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sine–Gordon theories, and the quantum Hall flow diagram
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Paris, France
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Abstract. Using the renormalization group (RG) we study two-dimensional electromagnetic
Coulomb gas and extended sine–Gordon theories invariant under the modular groupSL(2,Z).
The flow diagram is established from the scaling equations, and we derive the critical behaviour at
the various transition points of the diagram. Following the proposal for aSL(2,Z) duality between
different quantum Hall fluids, we discuss the analogy between this flow and the global quantum
Hall phase diagram.

1. Introduction

In statistical physics, self-duality in the sense of Kramers and Wannier maps the high-
temperature regime of a given model with its low-temperature regime. In two dimensions,
examples of self-dual theories are provided by the two (Ising), three and four state Potts,
the Ashkin Teller, and the clock models. All of them can be represented in terms of an
electromagnetic Coulomb gas (Kadanoff 1978, 1979), allowing one to understand this self-
duality as an exchange of the electric and magnetic components of the charges of the equivalent
Coulomb gas (Kadanoff 1978). This self-duality allows one to locate the transition point,
whose study, however, requires a full renormalization group (RG) study, either directly
on the Coulomb gas formulation (Nienhuis 1987) or on the associated sine–Gordon theory
(Boyanovsky 1989).

More than 15 years ago, Cardy uncovered a generalization of this simple duality by adding
a topological coupling between magnetic and electric charges of a two-flavour Coulomb gas
(Cardy 1982). Motivated by the study of oblique confinement in four-dimensionalZp lattice
gauge theory with a topologicalθ term, Cardy and Rabinovici (1982) formulated a Coulomb
gas where the presence of theθ term considerably enlarged the usual Kramers–Wannier duality
g→ 1/g to the full modular groupSL(2,Z) (Cardy 1982). Thisθ coupling was later extended
to higher dimensions in Shapere and Wilczek (1989). In analogy to the work of Kramers and
Wannier, Cardy (1982) derived the location of the numerous transition points in the presence
of this topological coupling, as the invariant points of the modular group.

The purpose of this paper is to explicitly study using the RG, the scaling behaviour of
an extension of the Cardy–Rabinovici model. Besides the critical behaviour associated with
the transition points identified by Cardy, this renormalization study allows one to find the

0305-4470/99/213865+10$19.50 © 1999 IOP Publishing Ltd 3865



3866 D Carpentier

scaling flow of the model: the fixed points defining different phases are defined and related
to the transitions points. Thus, we find a condition that two different phases must fulfil to
be related by a transition. This is, to our knowledge, the first explicit renormalization of a
two-dimensional modular invariant model.

Besides the applications of this extended Coulomb gas to the previously cited statistical
models in two dimensions and to fermion models in 1 + 1 dimension via its sine–Gordon
representation, such two-dimensional modular invariant theories are of interest for the study
of the global phase diagram of the quantum Hall effect. This effect corresponds to the
quantization of the transverse conductivityσxy of a two-dimensional gas of electrons in a
strong transverse magnetic field, and it is now well understood in terms of the microscopic
Laughlin wavefunctions (Laughlin 1983). The problem of the nature of the transitions between
the different quantum Hall fluids is of particular interest and remains unsolved. In particular,
the notion of superuniversality was proposed to explain the similar behaviour of all the
transitions in the global phase diagram of the quantum Hall effect (Kivelsonet al 1992).
Such a superuniversality can be deduced from a duality of the underlying model, relating all
the transition points with each other. Indeed, the similarity between the phase diagram of Cardy
(1982) and the expected renormalization flow diagram in the two-parameter scaling model of
the quantum Hall effect was noticed (Shapere and Wilczek 1989) before this proposal. Later
on, Lütken and Ross (1992) more precisely related the properties of this phase diagram with
the presence of aSL(2,Z) symmetry, in the framework of a two-parameterσxx, σxy scaling
theory.

On the other hand, the experiments of Shaharet al (1996) on the transition between the
ν = 1

3 and the Hall insulator have shown a reflection relation between the nonlinear current
density and electric field on both sides of the transition. Within the effective description
of the quantum Hall effect, this reflection was interpreted as a duality which exchanges the
electric and magnetic component of the low-lying excitations (Shaharet al 1996). Motivated
by these experimental results, several authors focused on modular invariant models (Fradkin
and Kivelson 1996, Pryadko and Zhang 1996). Even though no derivation of a microscopic
modular invariant model exists, these studies focused on the general constraint from the
modular symmetry on the phase diagram and expressions for the conductivity at the transitions
(Lütken and Ross 1992, Dolan 1998). The phase diagram of the modular invariant Coulomb
gas we study in this paper is expected to mimic the one of the quantum Hall effect. As
an explicit renormalization of a modular invariant model in two dimensions, we expect
this study to be helpful for the description of the critical behaviour of the quantum Hall
transitions.

In another context, it is interesting to note that modular invariant Coulomb gas also
appeared in the work of Callan and Freed (1992) on the dissipative motion of a charged
particle in two dimensions in a transversed magnetic field and a periodic electric potential.
Using a mapping to a one-dimensional version of the model of Cardy and Rabinovici (1982),
these authors found a phase diagram as a function of the dissipation strength and the magnetic
field which resembles the diagram obtained from our renormalization study.

This paper is organized as follows: in section 2.1 we define the model both in its sine–
Gordon version and as a lattice Villain model with a topologicalθ term. The mapping to
an electromagnetic Coulomb gas is then obtained in section 2.2 together with the symmetry
SL(2,Z) in section 2.3. In section 3.1 we derive the general RG equations for the model
using a Kosterlitz scheme, and the phase diagram is established in section 3.3 together with
the critical behaviour at the critical points of this diagram.
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2. Electromagnetic Coulomb gas

2.1. Extended sine–Gordon model and theta terms

In this paper we consider the two-dimensional extended sine–Gordon model defined in its
more general form by the partition function

Z =
∏
a

∫
d[φa] eA[φa,φ̃a ]

with the action

A[φa, φ̃a] =
∫

d2r

a2

(
− 1

4π

2k∑
a,b=1

[g−1]ab∂iφ
a∂iφ

b + 2y
∑
a

cos(φa)

+2ỹ
∑
a

cosp([g−1]abφ̃b −Mabφb)

)
. (1)

In this definition we consider 2k fieldsφa and their dual fields̃φa defined byi∂i φ̃ = εij ∂jφ,
wherei = 1, 2 labels the two directions of the plane, andεij is the antisymmetric tensor. The
couplinggab andMab are 2k×2kmatrices;Mab has to be antisymmetric for renormalizability
of the model (see the following):Mab = −Mba. In this context the operators

On,m(r) = exp i

(∑
a

naφ
a(r) +

∑
a

maφ̃
a(r)

)
(2)

correspond to the parafermions operators of Fradkin and Kadanoff (1980) which create a vector
electric chargen and magnetic chargem in siter.

Alternatively, we can consider aZp gauge theory defined on the square lattice by 2k Villain
models perturbed by symmetry breaking fields of strengthy and coupled by a (topological)
term:

AV illain = − 1

4π

∑
α

∑
i=1,2

[g−1]ab(∂iφ
a
α − 2πpAaα,i)(∂iφ

b
α − 2πpAbα,i) + ln(y)

∑
α

naαn
a
α

+i
∑
α

naαφ
a
α − i

1

4π

∑
α

Mabεij (∂iφ
a
α − 2πpAaα,i)(∂jφ

b
α − 2πpAbα,j ) (3)

where theAaα,i correspond to the integer-valued gauge field defined on the bonds of the square
lattice, and∂xφaα is the discrete derivativeφaα+x − φaα. Here, and in the following, summation
over repeated indices is assumed.

The meaning of the coupling between the different fieldsφa becomes clearer upon
restriction to a two-component model (k = 1) with the coupling constants:

gac = gδac Mac = θ

2π
εac (k = 1). (4)

By considering the four-component fieldφµ = (0, 0, φ1, φ2) which only depends onx1, x2

we can write the quadratic term in (3) asFµνFµν whereµ, ν = 1, . . . ,4 andFµν is the
usual electromagnetic tensor associated with the fieldφµ: Fµν = ∂µφν − ∂νφµ − 2πpAµν .
The second term can be interpreted as a coupling between the electric particle and the field
φµ, while the last term reads(θ/2π)εµνρσFµνF ρσ = (θ/2π)FµνF̃µν , which is known as a
topologicalθ term. This model and its Coulomb gas formulation in two dimensions was first
studied by Cardy and Rabinovici (1982). The generalM coupling in (1) is thus the analogue of
this topological coupling for the 2k real component field in two dimensions. Other extensions
to higher dimensions of space were developed by Shapere and Wilczek (1989).
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Although in the following, we will derive the RG equation for the general model (1), we
only analyse in detail the scaling behaviour of the simpler model (4) with electric charges in
the first component (a = 1) and magnetic in the second (see below). This model is defined by
the following restriction of (1):

A = −1

4πg

∫
d2r

a2
((∂φ1)2 + (∂φ2)2) + y cos(φ1) + ỹ cosp

(
g−1φ̃2 − θ

2π
φ1

)
. (5)

We can now express the partition function of the above models in terms of electromagnetic
Coulomb gas, extending the usual case of Nienhuis (1987).

2.2. SL(2,Z) invariant electromagnetic Coulomb gas

To obtain the Coulomb gas formulation of the above model, we first use the Villain
approximation (Villain 1975) of the cosine coupling in (1):

e2y cosφ ∼
∑

n=0,±1

ein·φ+n2 ln(y).

This approximation is valid for small coupling strengthy. The models with both forms of
the interaction are known to be in the same universality class without the topological term
(Boyanovsky 1989), which ensures the same in our case. Within this approximation, the
partition sum of (1) consists of a trace over the fieldsφa(r) and the electric and magnetic
charge densityna(r) andma(r) of the exponential of the action

Ã =
∫

d2r

a2

(
− 1

4π

∑
a,b

[g−1]ab∂iφ
a∂iφ

b + i
∑
a

φa(na + pMabmb) + ip
∑
a

φ̃a[g
−1]abmb

+ ln(y)
∑
a

(na)2 + ln ỹ
∑
a

(ma)2
)
.

In this bare model the vector chargesn(r) have components 0,±1, however, upon coarse-
graining, charges with higher components will be generated. The lattice Villain model with a
topological coupling (3) leads exactly to the same sum, where the magnetic chargesma(r) are
located on the sites of the dual lattice. They are defined by the oriented sum of the potential
Aa over the plaquette surrounding the dual site:ma(r) = −εij ∂iAaj .

After integration over the fieldφa(r), and using the neutrality of the charges
∫
r
na(r) =∫

r
ma(r) = 0 (imposed by the infrared regularization), we obtain an electromagnetic two-

dimensional Coulomb gas of electricna and magneticma charges, defined either on a lattice
(and its dual for them charge) or in the continuum, which take value inZ2k. It is defined by
the grand canonical partition function

Z =
′∑

[ni ,mi ]

( N∏
i=1

∫
d2ri

a2
yni ,mi

)
eAcg [n,m] (6)

where theyn,m are the charge fugacities, and the primed sum counts each distinct configuration
only once. The corresponding action can be written in its most general form as

Acg[n,m] = 1
2[gac(na + pMabmb) ∗G ∗ (nc + pMcdmd) + p2(g−1)acma ∗G ∗mc]
−ipna ∗8 ∗mb (7)

where we assumed summation over repeated indices and used the contraction notation:
n ∗ G ∗ n = ∑

i 6=j niG(ri − rj )nj . In this action, the potentialsG and8 are defined
respectively by the propagators

gabG(r) = 〈φa(0)φb(0)〉 − 〈φa(0)φb(r)〉
−i8(r) = 〈φa(0)φ̃b(0)〉 − 〈φa(0)φ̃b(r)〉.
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In a neutral Coulomb gas, these propagators only need to be regularized at short distances:
in the following we will use a real-space hard cut-offa, corresponding to hard core charges.
The asymptotics of these interactions is given byG(r) + i8(r) ∼r�a ln(x + iy)/a. For a
definition of these potentials on the lattice, see Kadanoff (1979, appendix A).

2.3. Symmetries for two components charges (k = 1)

We now consider more precisely the model (5). With the presence of theθ (or M)
coupling, the usual Kramers–Wannier dualityg ↔ p2g−1 of the electromagnetic Coulomb gas
(Kadanoff 1978) is considerably enlarged (Cardy 1982). Besides the time reversal symmetry
T S[{na}, {ma}, g, θ ] = S[−{na}, {ma}, g,−θ ], the 2π periodicity of theθ coupling translates
into PS[{na}, {ma}, g, θ ] = S[{na − εab · mb}, {mb}, g, θ + 2π ]. Finally, the action (7) is
also invariant under the self-dual transformationD S[{na}, {ma}, g, θ ] = S[{εab · mb}, {εab ·
nb}, g′, θ ′] with

g

p2
= 1

g′
+ g′(θ ′)2 gθ = −g′θ ′. (8)

These transformations are better parametrized using the complex coupling constantz =
p θ

2π + ipg−1: the above transformation simply readsP(z) = z + 1 andD(z) = −z−1.
From this it is obviousD andP do not commute, and they generate the whole infinite discrete
groupSL(2, Z). The purpose of this paper is thus to explicitly study the behaviour of the
modular invariant Coulomb gas (7) under the RG.

3. Renormalizationà la Kosterlitz

3.1. Renormalization group equations

Without aθ (M) term, the electromagnetic Coulomb gas (7) can be renormalized either by
following the (Anderson–Yuval) Kosterlitz scheme (Nienhuis 1987) or directly by an operator
product expansion in the sine–Gordon formulation (Boyanovsky 1989). Both methods use
the product of the parafermion operators (2) and give the same results. Hence, for the sake
of simplicity, we will follow the Kosterlitz approach, extending the classical method to the
presence of theθ term (see Nienhuis (1987) for a detailed review of this method).

Upon coarse-graining the model by increasing the hard core cut-offa, we leave the partition
function (6) invariant by defining scale-dependent coupling constants and fugacities. Three
different contributions to these variables have to be considered: naive rescaling, fusion and
annihilation of electromagnetic charges. The naive rescaling comes simply from the change
of cut-off in the integration measure and the interactionG(r): it gives the eigenvalue of the
fugacitiesyn,m. Upon infinitesimal increase of the cut-offa→ ã = aedl , the distance between
two neighbouring charges can become less than the new cut-offã. When these two charges
form a dipole, we integrate them out (annihilation of charges), while we simply glue them
into a single charge otherwise (fusion of charges). In the latter case we get a correction to
the fugacity of the new charge, which together with the naive rescaling, gives the following
scaling equation for the fugacities:

∂lyn,m =
(

2− g
2

∑
a

(na + pMab ·mb)2 − p
2

2g

∑
a

(ma)2
)
yn,m

+π
∑

(n′,m′)+(n′′,m′′)=(n,m)
δn′·m′′+n′′·m′yn′,m′yn′′,m′′ (9a)

with the notationn ·m =∑a n
ama.
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In the other case, the small dipoles we annihilate upon coarse-graining screen the
interaction between distant charges. In the partition function (6), the term involving two
(nonzero) charges(ns ,mt ) and(ns ,mt ) distant froma < |rs − rt | < aedl can be expanded
in a/|ri − rj | (the distance between distant charges) and yields

−2π2 dl
∫
|ri−rj |>ã

∑
(ni ,mi );(nj ,mj )

yni ,mi
ynj ,mj

(αisαjs − βisβjs)y2
ns ,ms

G(ri − rj )

whereαjs = gacNa
j N

c
s + p2(g−1)acmajm

c
s, βjs = p(najmas + nasm

a
j ) and we have defined the

composite electric component of the chargesNa
j = naj +pMabmbj . Using the antisymmetry of

Mab and re-exponentiating this contribution, we can check the renormalizability of the model
to ordery2 as this contribution can be cast into a contribution to the matricesg,M and the
fugacities. We obtain the following corrections tog andM to the ordery2:

∂lg
ac = −2π2

∑
ns ,ms

(gabgcdNb
s N

d
s − p2masm

c
s)y

2
ns ,ms

(9b)

∂lM
ab = −2π2p

∑
ns ,ms

[(g−1)bcNa
s m

c
s − (g−1)acNb

s m
c
s ]y

2
ns ,ms

. (9c)

Notice the antisymmetry of the correction (9c) to Mab. We can now derive the
renormalization flow from these scaling equations.

3.2. Specific model and charge asymmetry

In the following we will restrict our study to the model (5). In contrast to the usual case
where the fugacities of electromagnetic charges are symmetric both inn andm (Nienhuis
1987), here this symmetry is broken by the presence of theθ coupling. As seen above with
the T symmetry, changingn to −n amounts to also changingθ to −θ , and similarly with
the transformationm → −m. The only symmetry which does not modify eitherg or θ
corresponds to(n,m) → (−n,−m), which ensures the neutrality of the gas for any value
of the couplings. Hence, we cannot assume them or n parity of the fugacitiesyn,m as the
conditionyn,m = y−n,m = yn,−m will not be preserved by the RG.

For the model (5) we need only consider charges satisfyingn2 = 0,m1 = 0. We will use
the notation(n,m) for (n1, m2). The above RG equations (9) can then be written in a more
pleasant way, using the notationx = pg−1 andt = pθ/2π :

∂lx = 2π2p
∑
n,m

[(n + tm)2 − x2m2]y2
n,m +O(y3) (10a)

∂lt = −4π2px
∑
n,m

m(n + tm)y2
n,m +O(y3) (10b)

∂lyn,m = 2
(
1− p

4x
(n + tm)2 − p

4
xm2

)
yn,m +O(y2). (10c)

In the last equation the nonlinear term from (9c) has been omitted, being subdominant
around each transition point. However, it has to be taken into account when analysing the
topology of the whole phase diagram. The above RG equations correspond to the starting point
of our analysis of the different transitions. Their invariance under the duality transformations
is made more explicit if we write them as a single equation for the complex coupling constantz:

∂lz = i2π2p
∑
n,m

(n + zm)2y2
n,m. (11)

In this last equation, the invariance under duality of the flow (z→−z−1) is obvious.
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Figure 1. RG flow in the planep θ
2π , pg

−1. The flow are shown up tom = 3. The regions inside
the circle correspond to stability regions for charges(n,m) with nonzeron,m labelling the size of
the circle whilen gives their positions. Forpg−1 > 1 only charges withm = 0 exist. The transition
points betweenm 6= 0 phases are shown as black points while the black region corresponds to a
phase with no charge (neutral phase).

The invariance under duality of these beta functions, which was assumed in previous
studies of modular invariant models, have important consequences: as the axist = 0 is
invariant (in the limit of vanishing fugacities) and thus correspond to a flow line of the above
equations, we know from the action of the modular group on this flow line that all the flow lines
of the phase diagram are either straight lines or arcs of circles. The flow diagram obtained by
numerically integrating these equations is shown in figure 1, where only charges withm 6 3
have been taken into account.

3.3. Analysis of the flow

To derive the phase diagram from the renormalization analysis, we first find the domains where
a charge(n,m) proliferates. Such a charge proliferation, or equivalently the parafermion
operator (2) associated with a charge(n + θ

2π m,m), is relevant when the associated fugacity
increases under rescaling. From the renormalization eigenvalue of the fugacities in (10c)
we deduce that the pure electric charges(n, 0) are only relevant forx > pn2/4. For
x < 1 the composite charges(n,m) become relevant inside the circles [n,m] centred on
(t, x) = (−n/m, 2/(pm2)) of radius 2/(pm2). All these circles are thus tangent to the axis
x = 0 (see figure 1).

Each circle [n,m] is characterized by a ratioν = n/m instead ofn,m, as all charges
(λn, λm) with λ ∈ Z are generated under renormalization in this circle (see figure 1). In
the following we will write ν = n/m wherem is the minimal magnetic charge allowed in
the circle. Under renormalization, in a circleν = n/m, x = pg−1 flows to zero whilet is
renormalized tot∗ = ν. Hence each rational point of the axisx = 0 corresponds to a fixed
point of the RG, characterizing a given phase. The phasem = 0, stable forx > pn2/4, can be
viewed as a special circle of infinite radius, characterized byν = ∞. In this phasex →∞ and
t is slightly renormalized to a (non-universal) real value. Belowx < pn2/4 and between all
these circles, all the fugacities renormalize to zero, which corresponds to a neutral phase of the
Coulomb gas, characterized by non-universal renormalizedg andθ and vanishing fugacities.

Transitions in this phase diagram area priori of two different types: the transitions between
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two circles characterized by a different ratioν and the transition between a phase with relevant
charge(n,m) and the neutral phase. Transitions of the first kind correspond to tangent points
between circles in the phase diagram. Such points exist only whenp = 4. Forp < 4,
the circles overlap and these transitions are no longer accessible by the present perturbative
study, while forp > 4 all circles with different ratioν are disconnected and these transitions
disappear. In the following we will consider in more detail the casep = 4, whose phase
diagram is shown on figure 1.

A transition between two phases (ratios)ν1 andν2 is allowed if the two corresponding
circles are at a tangent to each other, which can be written

ν1− ν2 = ± 1

m1m2
. (12)

The corresponding transition point is located in(t, x) = (−(n1m1+n2m2)/(m
2
1+m2

2), 1/(m
2
1+

m2
2)). To further analyse these transitions, we need to point out that any circleν can be deduced

from the circleν = 0 by succesive application of the transformationsP, P−1 and the duality
D. Moreover, the circleν = 0 itself is the image underD of the line of phase transitions
x = 1. The transition points between the phaseν = 0 and otherν ′ = ±1/m (see figure 1)
are all images underD of the transition points between [1, 0] and the phases [n, 1], which
are themselves related to the transitions [1, 0]↔ [0, 1] by the action ofP andP−1. Thus all
the transition points between two ratiosν andν ′ correspond to the same critical behaviour.
Similarly all transitions between a phaseν and the neutral phase (no charge condensate) are
images of the transition between [1, 0] and this phase. We can now study these two transitions
perturbatively in theyn,m.

First, at a transition betweenν1 = n1/m1 andν2 = n2/m2 we can write renormalization
equations for the distance orthonormal to the transition pointδ12 while the distance
perpendicular to this axis is not renormalized to lowest order. Usingε = (m2

1 + m2
2)δ12

andy = yn1m1, ỹ = yn2m2 we obtain

∂lε = 2π2(y2 − ỹ2) ∂ly = 2εy ∂lỹ = 2εỹ

which correspond to a Kosterlitz–Thouless-like diverging correlation lengthξ ∼
exp(cte/|ε| 12 ). In both phases, the correlation functions of the parafermion operators decays
exponentially:

〈ei(nφ(r)+mφ̃(r))e−i(nφ(0)+mφ̃(0))〉 ∼ e−
r
ξ .

The transition between the neutral phase and a circleν is describe by a critical point with
one marginal direction (tangent to the circle) and the same diverging correlation length. While
the correlation function have the same kind of exponential decays from the circle side of the
transition, they decay algebraically in the neutral phase:

〈ei(nφ(r)+mφ̃(r))e−i(nφ(0)+mφ̃(0))〉 ∼
(a
r

)1
x
(n+tm)2+xm2

.

4. Analogy with the quantum Hall effect

Within the context of the two-parameter scaling theory of the quantum Hall effect, the first
idea consists in identifying the coupling of the Coulomb gas model with the components of the
conductivity tensor of the electron gasσxy = t , σxx = x. The ratioν defined in the above study
naturally translates into the filling factors of the quantum Hall states: each circle of the flow
diagram corresponds to a given quantum Hall fluid and the renormalization equations we obtain
provide the expected asymptotic value for this conductivity:σ ∗xy = ν, σ ∗xx = 0. Following
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this analogy we can find that transitions between two filling factorsν1, ν2 are allowed if they
satisfy the expected relation (12). All the allowed transitions between the two plateaux are
in the same universality, being related by the dualityD (8) which exchanges the electric and
magnetic charges, as in Shaharet al (1996), thus supporting the superuniversality hypothesis
(Kivelsonet al 1992).

However, we notice that in our flow diagram, filling factors with any denominators exist,
while only even denominators are expected for quantum Hall fluids. Moreover, fixed points
corresponding to filling factors (circles) with even and odd denominators are related by modular
transformations: hence one cannot avoid the even denominators in this model. This result has to
be related to recent papers (Georgelinet al1997) which reveal that the symmetry hidden behind
the quantum Hall hierarchies should be the subgroup0(2) of SL(2,Z) instead of the whole
modular group. This subgroup is generated by the transformationz→−z/(2z+1) (instead of
z→ −z−1 in this study) which preserves the oddness of filling factors. This transformation,
when restricted to the axist = 0 (imaginary axis), corresponds tog→ g/(1 + 4g2). Hence it
does not exchange the high- and low-temperature phases of the usual electromagnetic Coulomb
gas (Kadanoff 1978). Thus an extension of the usual electromagnetic model to a0(2) invariant
theory will not simply correspond to the addition of a topological term as for the model studied
in this paper.

To conclude, let us comment in comparison with recent studies which focus on the
constraint on the beta function from the modular symmetry (Dolan 1998). That study (together
with Burgess and Lutken (1997)) assumes a modular (or0(2)) symmetry in a model with two
parametersσxx, σxy , and derives the general form of the beta function of this model. In our
work the model (6) possesses an infinite number of coupling constants corresponding to the
electromagnetic charge fugacities. Thus a direct comparison between the beta functions is not
possible. However, it should be noted that our renormalization procedure provides the first
explicit example of the commutation of the modular symmetry and the renormalization, which
is the central hypothesis of Burgess and Lutken (1997) and Dolan (1998).

5. Conclusion

In this paper we thus extended the renormalization study of Nienhuis (1987) to the Coulomb gas
with a topologicalθ term in two dimensions. The renormalization scheme we used provides
scaling equations which were themselves found to be invariant under the modular group.
To our knowledge this study provides the first example in two dimensions of an explicit
renormalization of a modular invariant model. The rich phase diagram of this model certainly
deserves more work: of particular interest will be the applications of this renormalization study
to the extensions of the various statistical models, related to the electromagnetic Coulomb gas
in the absence of theθ term.

Note added in proof. After completion of this paper, a preprint (Cristofano, Giuliano and Nicodemi 1998) appeared
on a related quantum Hall model where a finite electromagnetic background charge is added to thek = 1 restriction
of the model (7). Although these authors used a simplified scheme, their scaling analysis seems to agree with the
complete RG equations we derived in this paper.
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